A Review of Antibiotic Classes

# **Gram-Positive Aerobes**

COCCI <u>clusters</u> - *Staphylococci* <u>pairs</u> - *S. pneumoniae* <u>chains</u> - group and <u>viridans streptococci</u> <u>pairs and chains</u> -<u>Enterococcus sp.</u>

BACILLI

Bacillus sp. Corynebacterium sp. Listeria monocytogenes Nocardia sp.

# Gram-Negative Aerobes

#### COCCI

Moraxella catarrhalis Neisseria gonorrhoeae Neisseria meningitidis Haemophilus influenzae

#### BACILLI

E. coli, Enterobacter sp. Citrobacter, Klebsiella sp. Proteus sp., Serratia Salmonella, Shigella Acinetobacter, Helicobacter Pseudomonas aeruginosa\*

## Anaerobes

"Above Diaphragm" Peptococcus sp. Peptostreptococcus sp. Prevotella Veillonella Actinomyces "Below Diaphragm"
Clostridium perfringens, tetani, and difficile
Bacteroides fragilis, disastonis, ovatus, thetaiotamicron
Fusobacterium

# **Other Bacteria**

- Atypical Bacteria
  - » Legionella pneumophila
  - » Mycoplasma pneumoniae or hominis
  - » Chlamydia pneumoniae or trachomatis
- Spirochetes
  - » Treponema pallidum (syphilis)
  - » Borrelia burgdorferi (Lyme)

# Common Bacterial Pathogens by Site of Infection

- Certain bacteria have a propensity to commonly cause infection in particular body sites or fluids
- Antibiotic may be chosen before results of the culture are available based on some preliminary information
  - » Site of infection and likely causative organism
  - » Gram-stain result (does result correlate with potential organism above)

# Bacteria by Site of Infection

#### Mouth

Peptococcus Peptostreptococcus Actinomyces

#### <u>Abdomen</u>

E. coli, Proteus Klebsiella Enterococcus Bacteroides sp.

#### Lower Respiratory Community S. pneumoniae H. influenzae

K. pneumoniae Legionella pneumophila Mycoplasma, Chlamydia

#### Skin/Soft Tissue

S. aureus S. pyogenes S. epidermidis Pasteurella

#### Urinary Tract E. coli, Proteus Klebsiella Enterococcus Staph saprophyticus

Lower Respiratory Hospital K. pneumoniae P. aeruginosa Enterobacter sp. Serratia sp. S. aureus

#### **Bone and Joint**

S. aureus S. epidermidis Streptococci N. gonorrhoeae Gram-negative rods

#### **Upper Respiratory**

S. pneumoniae H. influenzae M. catarrhalis S. pyogenes

#### <u>Meningitis</u> S. pneumoniae N. meningitidis H. influenza Group B Strep

E. coli Listeria

# **Beta-Lactam Structure**



Monobactams



Carbapenems



# **β-Lactam Characteristics**

- Same MOA: Inhibit cell wall synthesis
- Bactericidal (except against Enterococcus sp.); time-dependent killers
- Short elimination half-life
- Primarily renally eliminated (except nafcillin, oxacillin, ceftriaxone, cefoperazone)
- Cross-allergenicity except aztreonam

# ALL β-lactams

## • Mechanism of Action

interfere with cell wall synthesis by binding to penicillin-binding proteins (PBPs) which are located in bacterial cell walls

inhibition of PBPs leads to inhibition of peptidoglycan synthesis

➤ are <u>bactericidal</u>

# ALL β-lactams

- Mechanisms of Resistance
   production of beta-lactamase enzymes
  - most important and most common
  - hydrolyzes beta-lactam ring causing inactivation
  - > alteration in PBPs leading to decreased binding affinity
  - > alteration of outer membrane leading to decreased penetration

# Antimicrobial Spectrum of Activity

- General list of bacteria that are killed or inhibited by the antibiotic
  - are established during early clinical trials of the antibiotic
  - local, regional and national susceptibility patterns of each bacteria should be evaluated; differences in antibiotic activity may exist
- Individualized susceptibilities should be performed on each bacteria if possible

Natural Penicillins (penicillin G, penicillin VK)

## **Gram-positive**

pen-susc *S. aureus* pen-susc *S. pneumoniae* Group streptococci viridans streptococci Enterococcus

### <u>Other</u>

Treponema pallidum (syphilis)

### **Gram-negative**

Neisseria sp.

### **Anaerobes**

Above the diaphragm *Clostridium sp.* 

Penicillinase-Resistant Penicillins (nafcillin, oxacillin, methicillin)

Developed to overcome the penicillinase enzyme of *S. aureus* which inactivated natural penicillins

## **Gram-positive**

methicillin-susceptible *S. aureus* Group streptococci viridans streptococci Aminopenicillins (ampicillin, amoxicillin)

Developed to increase activity against gram-negative aerobes

## Gram-positive

pen-susc *S. aureus* Group streptococci viridans streptococci Enterococcus sp. *Listeria monocytogenes* 

### **Gram-negative**

Proteus mirabilis Salmonella, Shigella some *E. coli* βL- *H. influenzae*  Carboxypenicillins (carbenicillin, ticarcillin)

Developed to further increase activity against resistant gram-negative aerobes

## <u>Gram-positive</u> <u>Gram-negative</u>

marginal

Proteus mirabilis Salmonella, Shigella some E. coli βL- H. influenzae Enterobacter sp. Pseudomonas aeruginosa Ureidopenicillins (piperacillin, azlocillin)

Developed to further increase activity against resistant gram-negative aerobes

### <u>Gram-positive</u>

viridans strep Group strep some Enterococcus

### Anaerobes

Fairly good activity

## Gram-negative

Proteus mirabilis Salmonella, Shigella E. coli βL- H. influenzae Enterobacter sp. Pseudomonas aeruginosa Serratia marcescens some Klebsiella sp.

## β-Lactamase Inhibitor Combos (Unasyn, Augmentin, Timentin, Zosyn)

Developed to gain or enhance activity against  $\beta$ -lactamase producing organisms

## **Gram-positive**

### S. aureus

<u>Anaerobes</u> Bacteroides sp.

## Gram-negative H. influenzae E. coli Proteus sp. Klebsiella sp.

*Neisseria gonorrhoeae Moraxella catarrhalis*  Classification and Spectrum of Activity of Cephalosporins

- Divided into 4 major groups called "Generations"
- Are divided into Generations based on
  antimicrobial activity
  resistance to beta-lactamase

## First Generation Cephalosporins

Best activity against gram-positive aerobes, with limited activity against a few gramnegative aerobes

#### Gram-positive

meth-susc *S. aureus* pen-susc *S. pneumoniae* Group streptococci viridans streptococci Gram-negative

*E. coli K. pneumoniae P. mirabilis* 

## Second Generation Cephalosporins

- Also includes some cephamycins and carbacephems
- In general, slightly less active against gram-positive aerobes, but more active against gram-negative aerobes
- Several second generation agents have activity against anaerobes

## Second Generation Cephalosporins Spectrum of Activity

### Gram-positive

meth-susc *S. aureus* pen-susc *S. pneumoniae* Group streptococci viridans streptococci Gram-negative *E. coli K. pneumoniae P. mirabilis H. influenzae M. catarrhalis Neisseria sp.* 

## Second Generation Cephalosporins Spectrum of Activity

The cephamycins (cefoxitin, cefotetan, and cefmetazole) are the only 2nd generation cephalosporins that have activity against anaerobes

*Bacteroides fragilis* Bacteroides fragilis group

# Third Generation Cephalosporins Spectrum of Activity

- In general, are even less active against grampositive aerobes, but have greater activity against gram-negative aerobes
- Ceftriaxone and cefotaxime have the best activity against gram-positive aerobes, including pen-resistant *S. pneumoniae*
- Several agents are strong inducers of extended spectrum beta-lactamases

# Third Generation Cephalosporins Spectrum of Activity

Gram-negative aerobes

*E. coli, K. pneumoniae, P. mirabilis H. influenzae, M. catarrhalis, N. gonorrhoeae* (including beta-lactamase producing); *N. meningitidis* 

*Citrobacter* sp., *Enterobacter* sp., *Acinetobacter* sp. *Morganella morganii*, *Serratia marcescens*, *Providencia* 

Pseudomonas aeruginosa (ceftazidime and cefoperazone)

## Fourth Generation Cephalosporins

- 4th generation cephalosporins for 2 reasons
  - Extended spectrum of activity
    - gram-positives: similar to ceftriaxone
    - gram-negatives: similar to ceftazidime, including *Pseudomonas aeruginosa*; also covers beta-lactamase producing *Enterobacter* sp.
  - Stability against β-lactamases; poor inducer of extended-spectrum β-lactamases
- Only cefepime is currently available

Carbapenems Spectrum of Activity

- Most broad spectrum of activity of all antimicrobials
- Have activity against gram-positive and gram-negative aerobes and anaerobes
- Bacteria not covered by carbapenems include MRSA, VRE, coagulase-negative staph, *C. difficile, S. maltophilia, Nocardia*

# Monobactams Spectrum of Activity

Aztreonam bind preferentially to PBP 3 of gram-negative aerobes; has <u>little to no</u> <u>activity against gram-positives or anaerobes</u>

#### Gram-negative

E. coli, K. pneumoniae, P. mirabilis, S. marcescens H. influenzae, M. catarrhalis Enterobacter, Citrobacter, Providencia, Morganella Salmonella, Shigella Pseudomonas aeruginosa β-lactams Pharmacology

- Concentration-independent bacterial killing Time above MIC correlates with efficacy
- Absorption
  - > Many penicillins degraded by gastric acid
  - > Oral  $\beta$ -lactams are variably absorbed; food delays rate and extent of absorption
    - Pen VK absorbed better than oral Pen G
    - Amoxicillin absorbed better than ampicillin

# β-lactams Pharmacology

#### • Distribution

- > Widely distributed into tissues and fluids
- Pens only get into CSF in the presence of inflamed meninges; parenteral 3<sup>rd</sup> and 4<sup>th</sup> generation cephs, meropenem, and aztreonam penetrate the CSF

#### • Elimination

- most eliminated primarily by the kidney, dosage adjustment of these agents is required in the presence of renal insufficiency
- Nafcillin, oxacillin, ceftriaxone, and cefoperazone are eliminated primarily by the liver; piperacillin also undergoes some hepatic elimination
- > ALL  $\beta$ -lactams have short elimination half-lives (< 2°), except for a few cephalosporins (ceftriaxone)

# β-Lactams

## Special Pharmacologic Considerations

- Some preparations of parenterally-administered penicillins contain sodium; must be considered in patients with CHF or renal insufficiency
  - Sodium Penicillin G2.0 mEq per 1 million unitsCarbenicillin4.7 mEq per gramTicarcillin5.2 mEq per gramPiperacillin1.85 mEq per gram
- Imipenem is combined with cilastatin to prevent hydrolysis by enzymes in the renal brush border

- Hypersensitivity 3 to 10 %
  - > Higher incidence with parenteral administration or procaine formulation
  - Mild to severe allergic reactions rash to anaphylaxis and death
  - Antibodies produced against metabolic byproducts or penicillin itself
  - Cross-reactivity exists among all penicillins and even other β-lactams
  - Desensitization is possible

- Neurologic especially with penicillins and carbapenems (imipenem)
  - Especially in patients receiving high doses in the presence of renal insufficiency
  - > Irritability, jerking, confusion, seizures
- Hematologic
  - Leukopenia, neutropenia, thrombocytopenia prolonged therapy (> 2 weeks)

• Gastrointestinal

Increased LFTs, nausea, vomiting, diarrhea, pseudomembranous colitis (*C. difficile* diarrhea)

• Interstitial Nephritis

Cellular infiltration in renal tubules (Type IV hypersensitivity reaction – characterized by abrupt increase in serum creatinine; can lead to renal failure

Especially with methicillin or nafcillin

- Cephalosporin-specific: MTT side chain cefamandole, cefotetan, cefmetazole, cefoperazone, moxalactam
  - > Hypoprothrombinemia due to reduction in vitamin K-producing bacteria in GI tract

Ethanol intolerance

• Others: phlebitis, hypokalemia, Na overload

# Fluoroquinolones

- Novel group of synthetic antibiotics developed in response to growing resistance
- Agents available today are all structural derivatives of nalidixic acid
- The *fluorinated* quinolones (FQs) represent a major therapeutic advance:
  - > Broad spectrum of activity
  - Improved PK properties excellent bioavailability, tissue penetration, prolonged half-lives
  - > Overall safety
- Disadvantages: resistance, expense
#### **Quinolone Antibacterial Structure-Activity Relationships**



Domagala JM. J Antimicrob Chemother. 1994;33:685-706.

# Fluoroquinolones

- Mechanism of Action
  - > Unique mechanism of action
  - Inhibit bacterial topoisomerases which are necessary for DNA synthesis
    - DNA gyrase removes excess positive supercoiling in the DNA helix
      - Primary target in gram-negative bacteria
    - Topoisomerase IV essential for separation of interlinked daughter DNA molecules
      - Primary target for many gram-positive bacteria
  - FQs display concentration-dependent <u>bactericidal</u> activity

# Fluoroquinolones

• Mechanisms of Resistance

Altered target sites – chromosomal mutations in genes that code for DNA gyrase or topoisomerase IV

- most important and most common
- >Altered cell wall permeability decreased porin expression
- Expression of active efflux transfers FQs out of cell

Cross-resistance occurs between FQs

### The Available FQs

### Older FQs

- Norfloxacin (Noroxin<sup>®</sup>) PO
- Ciprofloxacin (Cipro<sup>®</sup>) PO, IV
   *Newer FQs*
- Levofloxacin (Levaquin<sup>®</sup>) PO, IV
- Gatifloxacin (Tequin<sup>®</sup>) PO, IV
- Moxifloxacin (Avelox<sup>®</sup>) PO, IV

# FQs Spectrum of Activity

Gram-positive – older agents with poor activity; newer FQs with enhanced potency

- Methicillin-susceptible *Staphylococcus aureus*
- *Streptococcus pneumoniae* (including PRSP)
- Group and viridans streptococci limited activity
- Enterococcus sp. limited activity

## FQs Spectrum of Activity

<u>Gram-Negative</u> – all FQs have excellent activity (cipro=levo>gati>moxi)

- Enterobacteriaceae including E. coli, Klebsiella sp, Enterobacter sp, Proteus sp, Salmonella, Shigella, Serratia marcescens, etc.
- H. influenzae, M. catarrhalis, Neisseria sp.
- Pseudomonas aeruginosa significant resistance has emerged; ciprofloxacin and levofloxacin with best activity

# FQs Spectrum of Activity

<u>Anaerobes</u> – only trovafloxacin has adequate activity against *Bacteroides sp.* <u>Atypical Bacteria</u> – all FQs have excellent activity against atypical bacteria including:

- Legionella pneumophila DOC
- Chlamydia sp.
- Mycoplasma sp.
- Ureaplasma urealyticum

Other Bacteria – Mycobacterium tuberculosis, Bacillus anthracis Fluoroquinolones Pharmacology

- Concentration-dependent bacterial killing AUC/MIC (AUIC) correlates with efficacy
- Absorption
  - Most FQs have good bioavailability after oral administration
  - Cmax within 1 to 2 hours; coadministration with food delays the peak concentration

#### • Distribution

- Extensive tissue distribution prostate; liver; lung; skin/soft tissue and bone; urinary tract
- > Minimal CSF penetration
- Elimination renal and hepatic; not removed by HD

## Fluoroquinolones Adverse Effects

- Gastrointestinal 5 %
  - > Nausea, vomiting, diarrhea, dyspepsia
- Central Nervous System
  - Headache, agitation, insomnia, dizziness, rarely, hallucinations and seizures (elderly)
- Hepatotoxicity
  - > LFT elevation (led to withdrawal of trovafloxacin)
- Phototoxicity (uncommon with current FQs)
  - > More common with older FQs (halogen at position 8)
- Cardiac
  - Variable prolongation in QTc interval
  - > Led to withdrawal of grepafloxacin, sparfloxacin

## Fluoroquinolones Adverse Effects

- Articular Damage
  - Arthopathy including articular cartilage damage, arthralgias, and joint swelling
  - > Observed in toxicology studies in immature dogs
  - Led to contraindication in pediatric patients and pregnant or breastfeeding women
  - Risk versus benefit
- Other adverse reactions: tendon rupture, dysglycemias, hypersensitivity

Fluoroquinolones Drug Interactions

- Divalent and trivalent cations ALL FQs
  Zinc, Iron, Calcium, Aluminum, Magnesium
  Antacids, Sucralfate, ddI, enteral feedings
  Impair oral absorption of orally-administered FQs
   may lead to CLINICAL FAILURE
  Administer doses 2 to 4 hours apart; FQ first
- Theophylline and Cyclosporine cipro
   inhibition of metabolism, 1 levels, 1 toxicity
- Warfarin idiosyncratic, all FQs

## Macrolides

- Erythromycin is a naturally-occurring macrolide derived from *Streptomyces erythreus* problems with acid lability, narrow spectrum, poor GI intolerance, short elimination half-life
- Structural derivatives include clarithromycin and azithromycin:
  - > Broader spectrum of activity
  - Improved PK properties better bioavailability, better tissue penetration, prolonged half-lives
  - > Improved tolerability

### Macrolide Structure



## Macrolides

#### Mechanism of Action

- Inhibits protein synthesis by reversibly binding to the 50S ribosomal subunit
  - Suppression of RNA-dependent protein synthesis
- Macrolides typically display <u>bacteriostatic</u> activity, but may be <u>bactericidal</u> when present at high concentrations against very susceptible organisms
- > Time-dependent activity

# Macrolides

#### Mechanisms of Resistance

- Active efflux (accounts for 80% in US) mef gene encodes for an efflux pump which pumps the macrolide out of the cell away from the ribosome; confers low level resistance to macrolides
- Altered target sites (primary resistance mechanism in Europe) – encoded by the erm gene which alters the macrolide binding site on the ribosome; confers *high level* resistance to all macrolides, clindamycin and Synercid

Cross-resistance occurs between all macrolides

## Macrolide Spectrum of Activity

**<u>Gram-Positive Aerobes</u>** – erythromycin and clarithromycin display the best activity

#### (Clarithro>Erythro>Azithro)

- Methicillin-susceptible *Staphylococcus aureus*
- Streptococcus pneumoniae (only PSSP) resistance is developing
- Group and viridans streptococci
- Bacillus sp., Corynebacterium sp.

## Macrolide Spectrum of Activity

<u>Gram-Negative Aerobes</u> – newer macrolides with enhanced activity (Azithro>Clarithro>Erythro)

- *H. influenzae* (not erythro), *M. catarrhalis, Neisseria sp.*
- Do NOT have activity against any *Enterobacteriaceae*

# Macrolide Spectrum of Activity

Anaerobes – activity against upper airway anaerobes
Atypical Bacteria – all macrolides have excellent activity against atypical bacteria including:

- Legionella pneumophila DOC
- Chlamydia sp.
- Mycoplasma sp.
- Ureaplasma urealyticum

Other Bacteria – Mycobacterium avium complex (MAC – only A and C), Treponema pallidum, Campylobacter, Borrelia, Bordetella, Brucella. Pasteurella

### Macrolides Pharmacology

### Absorption

- Erythromycin variable absorption (F = 15-45%); food may decrease the absorption
  - Base: destroyed by gastric acid; enteric coated
  - Esters and ester salts: more acid stable
- Clarithromycin acid stable and well-absorbed (F = 55%) regardless of presence of food
- Azithromycin –acid stable; F = 38%; food decreases absorption of capsules

### Macrolides Pharmacology

#### Distribution

- Extensive tissue and cellular distribution clarithromycin and azithromycin with extensive penetration
- > Minimal CSF penetration

#### Elimination

- Clarithromycin is the only macrolide partially eliminated by the kidney (18% of parent and all metabolites); requires dose adjustment when CrCl < 30 ml/min</p>
- > Hepatically eliminated: ALL
- > NONE of the macrolides are removed during hemodialysis!
- Variable elimination half-lives (1.4 hours for erythro; 3 to 7 hours for clarithro; 68 hours for azithro)

Macrolides Adverse Effects

- Gastrointestinal up to 33 %
  - > Nausea, vomiting, diarrhea, dyspepsia
  - > Most common with erythro; less with new agents
- Cholestatic hepatitis rare
  - > 1 to 2 weeks of erythromycin estolate
- Thrombophlebitis IV Erythro and Azithro
   Dilution of dose; slow administration
- Other: ototoxicity (high dose erythro in patients with RI); QTc prolongation; allergy

# Macrolides Drug Interactions

Erythromycin and Clarithromycin ONLY– are *inhibitors* of cytochrome p450 system in the liver; may increase concentrations of:

Theophylline Carbamazepine Cyclosporine Phenytoin Warfarin Digoxin, Disopyramide Valproic acid Terfenadine, Astemizole Cisapride Ergot alkaloids

# Aminoglycosides

- Initial discovery in the late 1940s, with streptomycin being the first used; gentamicin, tobramycin and amikacin are most commonly used aminoglycosides in the US
- All derived from an actinomycete or are semisynthetic derivatives
- Consist of 2 or more amino sugars linked to an aminocyclitol ring by glycosidic bonds = aminoglycoside
- Are polar compounds which are poly-cationic, water soluble, and incapable of crossing lipid-containing cell membranes

## Aminoglycoside Structure



streptidine

2-deoxystreptamine

Aminoglycosides Mechanism of Action

- Multifactorial, but ultimately involves inhibition of protein synthesis
- Irreversibly bind to 30S ribosomes
  - must bind to and diffuse through outer membrane and cytoplasmic membrane and bind to the ribosome
  - disrupt the initiation of protein synthesis, decreases overall protein synthesis, and produces misreading of mRNA
- Are bactericidal

### Aminoglycosides Mechanism of Resistance

- Alteration in aminoglycoside uptake
   decreased penetration of aminoglycoside
- Synthesis of aminoglycoside-modifying enzymes
  - plasmid-mediated; modifies the structure of the aminoglycoside which leads to poor binding to ribosomes
- Alteration in ribosomal binding sites

Aminoglycosides Spectrum of Activity

#### **Gram-Positive Aerobes**

most *S. aureus* and coagulase-negative staph viridans streptococci *Enterococcus sp.* 

Gram-Negative Aerobes (not streptomycin) E. coli, K. pneumoniae, Proteus sp. Acinetobacter, Citrobacter, Enterobacter sp. Morganella, Providencia, Serratia, Salmonella, Shigella Pseudomonas aeruginosa (amik>tobra>gent)

### Mycobacteria

- tuberculosis streptomycin
- atypical streptomycin or amikacin

## Aminoglycosides Pharmacology

- Absorption poorly absorbed from gi tract
- Distribution
  - primarily in extracellular fluid volume; are widely distributed into body fluids but NOT the CSF
  - distribute poorly into adipose tissue, use LBW for dosing
- Elimination
  - eliminated unchanged by the kidney via glomerular filtration; 85-95% of dose
  - elimination half-life dependent on renal fxn
    - normal renal function 2.5 to 4 hours
    - impaired renal function prolonged

## Aminoglycosides Adverse Effects

### Nephrotoxicity

- nonoliguric azotemia due to proximal tubule damage;
   increase in BUN and serum Cr; reversible if caught early
- risk factors: prolonged high troughs, long duration of therapy (> 2 weeks), underlying renal dysfunction, elderly, other nephrotoxins

### Ototoxicity

- 8th cranial nerve damage vestibular and auditory toxicity; irreversible
- vestibular: dizziness, vertigo, ataxia S, G, T
- auditory: tinnitus, decreased hearing A, N, G
- risk factors: same as for nephrotoxicity

# Vancomycin

- Complex tricyclic glycopeptide produced by *Nocardia orientalis*, MW = 1500 Da
- Commercially-available since 1956
- Current product has been extensively purified
   decreased adverse effects
- Clinical use decreased with introduction of antistaphylococcal penicillins
- Today, use increasing due to emergence of resistant bacteria (MRSA)

## Vancomycin Structure



### Vancomycin Mechanism of Action

- Inhibits bacterial cell wall synthesis at a site different than beta-lactams
- Inhibits synthesis and assembly of the second stage of peptidoglycan polymers
- Binds firmly to D-alanyl-D-alanine portion of cell wall precursors
- Bactericidal (except for Enterococcus)

### Vancomycin Mechanism of Resistance

- Prolonged or indiscriminate use may lead to the emergence of resistant bacteria
- Resistance due to modification of D-alanyl-D-alanine binding site of peptidoglycan
  - terminal D-alanine replaced by D-lactate
  - loss of binding and antibacterial activity
- 3 phenotypes vanA, vanB, vanC

### Vancomycin Spectrum of Activity

### Gram-positive bacteria

- Methicillin-Susceptible AND Methicillin-Resistant *S. aureus* and coagulase-negative staphylococci
- *Streptococcus pneumoniae* (including PRSP), viridans streptococcus, Group streptococcus
- Enterococcus sp.
- Corynebacterium, Bacillus. Listeria, Actinomyces
- *Clostridium* sp. (including *C. difficile*), *Peptococcus, Peptostreptococcus*

*No activity against gram-negative aerobes or anaerobes* 

### Vancomycin Pharmacology

- Absorption
  - absorption from gi tract is negligible after oral administration except in patients with intense colitis
  - Use IV therapy for treatment of systemic infection
- Distribution
  - widely distributed into body tissues and fluids, including adipose tissue; use TBW for dosing
  - inconsistent penetration into CSF, even with inflamed meninges
- Elimination
  - primarily eliminated unchanged by the kidney via glomerular filtration
  - elimination half-life depends on renal function

### Vancomycin Clinical Uses

- Infections due to methicillin-resistant staph including bacteremia, empyema, endocarditis, peritonitis, pneumonia, skin and soft tissue infections, osteomyelitis
- Serious gram-positive infections in  $\beta$ -lactam allergic patients
- Infections caused by multidrug resistant bacteria
- Endocarditis or surgical prophylaxis in select cases
- Oral vancomycin for refractory *C. difficile* colitis
### Vancomycin Adverse Effects

#### Red-Man Syndrome

- flushing, pruritus, erythematous rash on face and upper torso
- related to RATE of intravenous infusion; should be infused over at least 60 minutes
- resolves spontaneously after discontinuation
- may lengthen infusion (over 2 to 3 hours) or pretreat with antihistamines in some cases

Vancomycin Adverse Effects

- Nephrotoxicity and Ototoxicity
  - rare with monotherapy, more common when administered with other nephro- or ototoxins
  - risk factors include renal impairment, prolonged therapy, high doses, ? high serum concentrations, other toxic meds
- Dermatologic rash
- Hematologic neutropenia and thrombocytopenia with prolonged therapy
- Thrombophlebitis

# Streptogramins

- Synercid<sup>®</sup> is the first available agent which received FDA approval in September 1999
- Developed in response to need for agents with activity against resistant gram-positives (VRE)
- Synercid<sup>®</sup> is a combination of two semisynthetic pristinamycin derivatives in a 30:70 w/w ratio:

Quinupristin:Dalfopristin

# Synercid<sup>®</sup> Structure



Figure Structural formula of the main component of quinupristin.



Figure Structural formula of dalfopristin.

# Synercid®

#### Mechanism of Action

- Each agent acts on 50S ribosomal subunits to inhibit early and late stages of protein synthesis
- Bacteriostatic (cidal against some bacteria)

#### Mechanism of Resistance

- Alterations in ribosomal binding sites
- Enzymatic inactivation

### Synercid<sup>®</sup> Spectrum of Activity

#### Gram-Positive Bacteria

- Methicillin-Susceptible and Methicillin-Resistant *Staph aureus* and coagulase-negative staphylococci
- *Streptococcus pneumoniae* (including PRSP), viridans streptococcus, Group streptococcus
- Enterococcus faecium (ONLY)
- Corynebacterium, Bacillus. Listeria, Actinomyces
- Clostridium sp. (except C. difficile), Peptococcus, Peptostreptococcus

#### **Gram-Negative** Aerobes

– Limited activity against Neisseria sp. and Moraxella

#### Atypical Bacteria

– Mycoplasma, Legionella

Synercid<sup>®</sup> Adverse Effects

- Venous irritation especially when administered in peripheral vein
- Gastrointestinal nausea, vomiting, diarrhea
- Myalgias, arthralgias 2%
- Rash
- <sup>↑</sup> total and unconjugated bilirubin

## Oxazolidinones

- Linezolid (Zyvox<sup>®</sup>) is the first available agent which received FDA approval in April 2000; available PO and IV
- Developed in response to need for agents with activity against resistant gram-positives (MRSA, GISA, VRE)
- Linezolid is a semisynthetic oxazolidinone which is a structural derivative of earlier agents in this class

### Linezolid Structure



## Linezolid

#### Mechanism of Action

- Binds to the 50S ribosomal subunit near to surface interface of 30S subunit causes inhibition of 70S initiation complex which inhibits protein synthesis
- Bacteriostatic (cidal against some bacteria)

#### Mechanism of Resistance

- Alterations in ribosomal binding sites (RARE)
- Cross-resistance with other protein synthesis inhibitors is unlikely

### Linezolid Spectrum of Activity

#### Gram-Positive Bacteria

- Methicillin-Susceptible, Methicillin-Resistant AND Vancomycin-Resistant *Staph aureus* and coagulasenegative staphylococci
- *Streptococcus pneumoniae* (including PRSP), viridans streptococcus, Group streptococcus
- Enterococcus faecium AND faecalis (including VRE)
- Bacillus. Listeria, Clostridium sp. (except C. difficile), Peptostreptococcus, P. acnes

*Gram-Negative Aerobes – relatively inactive* 

**Atypical Bacteria** 

– Mycoplasma, Chlamydia., Legionella

### Linezolid Pharmacology

- Concentration-independent bactericidal activity
- PAE exists for Gram-Positive Bacteria
  - 3 to 4 hours for *S. aureus* and *S. pneumoniae*
  - 0.8 hours for Enterococcus
- Absorption 100% bioavailable
- Distribution readily distributes into well-perfused tissue; CSF penetration ≈ 30%
- Elimination both renally and nonrenally, but primarily metabolized; t<sup>1</sup>/<sub>2</sub> is 4.4 to 5.4 hours; no adjustment for RI; not removed by HD

Linezolid Adverse Effects

- Gastrointestinal nausea, vomiting, diarrhea (6 to 8 %)
- Headache 6.5%
- Thrombocytopenia 2 to 4%
  - Most often with treatment durations of > 2 weeks
  - Therapy should be discontinued platelet counts will return to normal

## Clindamycin

Clindamycin is a semisynthetic derivative of lincomycin which was isolated from *Streptomyces lincolnesis* in 1962; clinda is absorbed better with a broader spectrum



## Clindamycin

#### Mechanism of Action

- Inhibits protein synthesis by binding exclusively to the 50S ribosomal subunit
  - Binds in close proximity to macrolides competitive inhibition
- Clindamycin typically displays <u>bacteriostatic</u> activity, but may be <u>bactericidal</u> when present at high concentrations against very susceptible organisms

# Clindamycin

Mechanisms of Resistance

- Altered target sites encoded by the erm gene which alters the clindamycin binding site on the ribosome; confers *high level* resistance to all macrolides, clindamycin and Synercid
- Active efflux mef gene encodes for an efflux pump which pumps the macrolide out of the cell but NOT clindamycin; confers *low level* resistance to macrolides, but clindamycin still active

Clindamycin Spectrum of Activity

### **Gram-Positive Aerobes**

- Methicillin-susceptible *Staphylococcus aureus (MSSA only)*
- Streptococcus pneumoniae (only PSSP) resistance is developing
- Group and viridans streptococci

Clindamycin Spectrum of Activity

<u>Anaerobes</u> – activity against Above the Diaphragm Anaerobes (ADA)

Peptostreptococcussome Bacteroides spActinomycesPrevotella sp.PropionibacteriumFusobacteriumClostridium sp. (not C. difficile)

Other Bacteria – Pneumocystis carinii, Toxoplasmosis gondii, Malaria

Clindamycin Pharmacology

- Absorption available IV and PO
  - Rapidly and completely absorbed (F = 90%); food with minimal effect on absorption

### Distribution

- Good serum concentrations with PO or IV
- Good tissue penetration including bone; minimal CSF penetration

#### Elimination

- Clindamycin primarily metabolized by the liver; halflife is 2.5 to 3 hours
- Clindamycin is NOT removed during hemodialysis

Clindamycin Adverse Effects

• Gastrointestinal – 3 to 4 %

> Nausea, vomiting, diarrhea, dyspepsia

- *C. difficile* colitis one of worst offenders
  - > Mild to severe diarrhea
  - Requires treatment with metronidazole
- Hepatotoxicity rare
  - Elevated transaminases
- Allergy rare

### Metronidazole

Metronidazole is a synthetic nitroimidazole antibiotic derived from azomycin. First found to be active against protozoa, and then against anaerobes where it is still extremely useful.



### Metronidazole

#### Mechanism of Action

- Ultimately inhibits DNA synthesis
  - Prodrug which is activated by a reductive process
  - Selective toxicity against anaerobic and microaerophilic bacteria due to the presence of ferredoxins within these bacteria
  - Ferredoxins donate electrons to form highly reactive nitro anion which damage bacterial DNA and cause cell death

Metronidazole displays concentrationdependent <u>bactericidal</u> activity

## Metronidazole

Mechanisms of Resistance – well documented but relatively uncommon
> Impaired oxygen scavenging ability – higher local oxygen concentrations which decreases activation of metronidazole

Altered ferredoxin levels – reduced transcription of the ferredoxin gene; less activation of metronidazole

### Metronidazole Spectrum of Activity

#### Anaerobic Bacteria (BDA)

Bacteroides sp. (ALL) Fusobacterium Prevotella sp. Clostridium sp. (ALL) Helicobacter pylori

#### **Anaerobic Protozoa**

*Trichomonas vaginalis Entamoeba histolytica Giardia lamblia Gardnerella vaginalis* 

### Metronidazole Pharmacology

- Absorption available IV and PO
  - Rapidly and completely absorbed (F > 90%); food with minimal effect on absorption

### Distribution

- Good serum concentrations with PO or IV
- > Well absorbed into body tissues and fluids; DOES penetrate the CSF

#### Elimination

- Metronidazole is primarily metabolized by the liver (metabolites excreted in urine); half-life is 6 to 8 hours
- Metronidazole IS removed during hemodialysis

### Metronidazole Adverse Effects

- Gastrointestinal
  - > Nausea, vomiting, stomatitis, metallic taste
- CNS most serious
  - > Peripheral neuropathy, seizures, encephalopathy
  - Use with caution in patients with preexisting CNS disorders
  - Requires discontinuation of metronidazole
- Mutagenicity, carcinogenicity
   Avoid during pregnancy and breastfeeding

# Metronidazole Drug Interactions

#### <u>Drug</u>

### **Interaction**

Warfarin\* Alcohol\* Phenytoin Lithium Phenobarbital Rifampin

Anticoagulant effect
Disulfiram reaction
Phenytoin concentrations
Iithium concentrations
metronidazole concentrations
metronidazole concentrations

- <u>Polyenes</u> amphotericin B
  - *standard* of therapy for most invasive or life-threatening fungal infections
  - MOA: binds to ergosterol in cell wall and alters its integrity leading to cell lysis
  - <u>conventional ampho B</u> significant toxicity and administration problems
    - infusion-related reactions and nephrotoxicity
    - use of test dose, proper infusion time, dose escalation, use of premedications
  - dose/duration of conventional AmB depends on patient and type of infection

- <u>Polyenes</u> amphotericin B
  - <u>lipid-based ampho B</u> advantages
    - increased daily doses can be given (up to 10x)
    - high tissue concentrations
    - decreased infusion-related reactions, less pre-meds administered
    - marked decrease in nephrotoxicity
  - disadvantages include: COST and lack of clinical trials
  - primarily used in patients with renal insufficiency (Cr > 2.5, CrCl < 25), who develop renal insufficiency, or who are on other nephrotoxins</li>

- <u>Pyrimidines</u> 5-Flucytosine (5-FC)
  - MOA: interferes with protein and RNA/DNA synthesis
  - limited SOA; typically used in combination
  - SE: bone marrow toxicity, rash, nausea
  - only available orally
  - dose adjust in renal dysfunction

- <u>Azoles</u> alternative to AmB
  - ketoconazole, fluconazole, itraconazole
  - MOA: inhibit ergosterol synthesis
  - SOA: broad; only itra covers *Aspergillus*
  - ketoconazole and itraconazole lipid soluble, not into CSF, primarily metabolized, inhibit cp450
  - fluconazole water soluble, into CSF, renal elimination, doesn't inhibit cp450
  - IV itraconazole new

### Antifungal Agents Spectrum of Activity

Spectrum of Activity of Select Antifungal Agents

| Organism                 | Ampho<br>B | 5-FC | Ketoconazole | Fluconazole | ltraconazole |
|--------------------------|------------|------|--------------|-------------|--------------|
| Candida albicans         | S          | S    | S            | S           | S            |
| Candida, non albicans    | S          | S    | S/V          | S/V         | S/V          |
| Candida krusei           | S          |      | R            | R           | V/R          |
| Blastomyces dermatitidis | S          | R    | S            | S           | S            |
| Histoplasma capsulatum   | S          | R    | S            | S           | S            |
| Coccidioides immitis     | S          | R    | S            | S           | S            |
| Cryptococcus neoformans  | S          | S    | S            | S           | S            |
| Aspergillus spp.         | S          | V    | R            | R           | S            |
| Fusarium spp.            | S/V        | R    | R            | R           | R            |
| Zygomycetes (Mucor)      | S          | V    | R            | R           | R            |
| Sporothrix schenckii     | V          | R    | V            | V           | S            |

#### **Properties of Antifungal Agents**

|                                                 | Ampho B                                                                              | 5-FC                                                     | Ketoconazole                                                                       | Fluconazole                       | Itraconazole                              |
|-------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| Oral Bioavailability<br>(%)                     | < 5                                                                                  | > 80                                                     | 75                                                                                 | 90                                | > 70 (po soln,<br>empty stomach)          |
| Absorption ↓ by H-<br>2 blockers or<br>antacids |                                                                                      | No                                                       | Yes                                                                                | No                                | Probably                                  |
| Protein Binding (%)                             | 91-95                                                                                | 4                                                        | 99                                                                                 | 11                                | 99                                        |
| Half-life (hours)                               | 15 days                                                                              | 3-4                                                      | 7-10                                                                               | 17-30                             | 24-42                                     |
| Route of Excretion                              | unknown                                                                              | Renal<br>(adjust dose<br>with RI)                        | hepatic                                                                            | renal<br>(adjust dose<br>with RI) | hepatic                                   |
| Unchanged Drug in<br>Urine (%)                  | 3                                                                                    | > 75                                                     | 2-4                                                                                | > 80                              | < 1                                       |
| CSF:Plasma<br>Concs. (%)                        | 2-4                                                                                  | > 75                                                     | < 10                                                                               | > 70                              | < 1                                       |
| Dosage Form                                     | Intravenous                                                                          | Oral                                                     | Oral                                                                               | Oral, Intravenous                 | Oral, Intravenous                         |
| Dose                                            | 0.3-1.5 mg/kg/day                                                                    | 100-150 mg/kg/day                                        | 200-800mg QD                                                                       | 100- 800mg QD                     | 100-≥400mgQD                              |
| Adverse Effects                                 | N/V, chills, fever<br>during infusion;<br>↓ K, ↓ Mg;<br>phiebitis;<br>nephrotoxicity | Leukopenia,<br>↓ pits, N/V,<br>diarrhea, rash,<br>↑ LFTs | N/V, abd pain,<br>hepatotoxicity,<br>gynecomastia, ↓<br>cortisol/testost.,<br>rash | N/V, rash,<br>hepatotoxicity      | N/V, headache,<br>hepatotoxicity,<br>rash |
| Monitoring<br>Parameters                        | BUN, SCr, K,<br>Mg, CBC                                                              | CBC with diff,<br>SCr, LFTs                              | LFTs                                                                               | SCr, LFTs                         | LFTs                                      |

# **Azole Drug Interactions**

#### **Manifestation of Interaction Interacting Drug** Antifungal drugs ↑ gastric pH $\downarrow$ azole absorption Ketoconazole and Itraconazole ↑ azole metabolism rifampin increase in PT warfarin ↑ cyclosporine levels cyclosporine terfenadine/ astemizole / cisapride prolongation of QT interval increases in PT Fluconazole Warfarin ↑ cyclosporine and phenytoin levels cyclosporine/ phenytoin ↑ fluconazole clearance rifampin

#### **Drug Interactions of Antifungal Agents**

- <u>Echinocandins</u> Caspofungin (Cancidas)
  - approved January 2001; new class
  - MOA: inhibits glucan synthesis which is necessary for fungal cell wall
  - SOA: broad, includes azole- and AmB-resistant strains
  - SE: fever, thrombophlebitis, headache, <sup>↑</sup> LFTs, rash, flushing
  - for patients with *Aspergillus* who do not respond or cannot tolerate AmB
  - only available IV very expensive

## Availability and Cost

| Availability and Cost of Antifungal Agents |               |                                            |                                                        |                                                                 |  |  |  |  |
|--------------------------------------------|---------------|--------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
| Antifungal                                 | Brand<br>Name | Dosage Form                                | Strength                                               | AWP Cost per Unit<br>(\$)                                       |  |  |  |  |
| Ampho B                                    | Fungizone     | Powder for inj.                            | 50mg vial                                              | 17.85                                                           |  |  |  |  |
| Liposomał<br>Amphotericin                  | AmBisome      |                                            | 50mg vial                                              | 188.40                                                          |  |  |  |  |
| AmB Lipid Complex<br>(ABLC)                | Abelcet       |                                            | 50mg vial<br>100mg vial                                | 134.66<br>230.00                                                |  |  |  |  |
| AmB Colloidal<br>Dispersion (ABCD)         | Amphotec      |                                            | 100mg/50ml                                             | 160.00                                                          |  |  |  |  |
| Flucytosine                                | Ancobon       | Capsules                                   | 250mg<br>500mg                                         | 3.51<br>6.98                                                    |  |  |  |  |
| Ketoconazole                               | Nizoral       | Tablets                                    | 200mg                                                  | 3.68                                                            |  |  |  |  |
| Fluconazole                                | Diflucan      | Soln for inj<br>Tablets<br>Oral suspension | 2 mg/ml<br>50mg<br>100mg<br>150mg<br>200mg<br>50 mg or | 88.90 (100mg)<br>4.78<br>7.52<br>11.97<br>12.31<br>30.96 (35ml) |  |  |  |  |
| Itraconazole                               | Sporanox      | Capsules<br>Oral suspension<br>IV solution | 100mg<br>10 mg/ml<br>10 mg/ml amp                      | 111.75 (35 ml)<br>7.41<br>116.58 (150ml)<br>176.23 (25 ml)      |  |  |  |  |
| Terbinafine                                | Lamisil       | Tablets                                    | 250mg                                                  | 8.35                                                            |  |  |  |  |
| Caspofungin                                | Cancidas      | IV Solution                                | 50mg vial<br>70mg vial                                 | 360.00<br>463.75                                                |  |  |  |  |